

1. Consider the periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ with period $T > 0$ such that, on the interval $[0, T)$, it takes the form

$$f(x) = \begin{cases} +1, & \frac{T}{2} \leq x < T, \\ -1, & 0 \leq x < \frac{T}{2}. \end{cases}$$

Compute the Fourier series of f .

2. Let us consider an integral equation of the following form:

$$u(t) = g(t) + \int_0^t k(t-s)u(s) ds.$$

In the above, $k, g : [0, +\infty) \rightarrow \mathbb{R}$ are given piecewise continuous functions and we are solving for a function $u : [0, +\infty) \rightarrow \mathbb{R}$. *Remark:* The above equation is a special case of a Volterra equation of second kind. These equations arise naturally in models dynamic systems where past values of a variable influence the current value with a weight determined by the *kernel* function k .

(a) Assuming that both g and k are such so that their Laplace transform is well-defined in some half-space of the form $\{z : \operatorname{Re}(z) > a\}$, find an expression for the Laplace transform of u .

(b) Find u in the case when $g(t) = t$ and $k(t) = e^{-t}$.

3. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be an *odd*, L -periodic function. Using Fourier series, find an odd and L -periodic solution u of the biharmonic equation

$$\frac{d^4u}{dx^4} = f.$$

4. Consider the following initial state on the interval $I = [0, 2L]$:

$$u_0(x) = \begin{cases} x, & 0 \leq x \leq L, \\ 2L - x, & L \leq x \leq 2L. \end{cases}$$

Find the solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

with initial conditions

$$u(x, 0) = u_0(x), \quad \frac{\partial u}{\partial t}(x, 0) = 0$$

and Dirichlet boundary conditions at $x = 0, 2L$:

$$u(0, t) = 0, \quad u(2L, t) = 0.$$

Hint: First extend u, u_0 as odd periodic functions in the variable $x \in \mathbb{R}$; what should be the the period for this extension?

5. For $\kappa > 0$, let us consider the heat equation

$$\frac{\partial u}{\partial t}(x, t) = \kappa \frac{\partial^2 u}{\partial x^2}(x, t), \quad t > 0, x \in \mathbb{R}. \quad (1)$$

(a) Show that, for any solution u with $\frac{\partial u}{\partial x} \rightarrow 0$ as $x \rightarrow \pm +\infty$ and any $t_2 \geq t_1$, we have

$$\int_{-\infty}^{+\infty} u(x, t_1) dx = \int_{-\infty}^{+\infty} u(x, t_2) dx.$$

(Hint: Compute the derivative $\partial_t \int_{-\infty}^{+\infty} u(x, t) dx$.)

(b) Compute the solution of (1) with initial data

$$u(x, 0) = \frac{1}{\sqrt{4\pi\tau\kappa}} e^{-\frac{x^2}{4\tau\kappa}}$$

for some given $\tau > 0$. Deduce, in particular, that the heat evolution of a Gaussian function is a Gaussian function at any fixed time. (Hint: You will need to recall what is the Fourier transform of a Gaussian function, see Ex. 8.3)

6. So far, we have only considered cases of *homogeneous* boundary conditions (namely boundary conditions which are invariant if we replace the unknown function $u(x, t)$ with $\lambda \cdot u(x, t)$; for example, Dirichlet conditions $u(x_0, t) = 0$ or Neumann conditions $\partial_x u(x_0, t) = 0$). Let us now consider the question of how to handle inhomogeneous boundary conditions.

To this end, let us consider the following inhomogeneous initial-boundary value problem for the heat equation:

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) = f(x, t) & \text{for } x \in (0, 1), t > 0, \\ u(x, 0) = u_0(x), \\ u(0, t) = g_0(t), \quad u(1, t) = g_1(t), & \text{for } t > 0, \end{cases}$$

where $f : (0, 1) \times (0, +\infty) \rightarrow \mathbb{R}$, $u_0 : (0, 1) \rightarrow \mathbb{R}$ and $g_0, g_1 : [0, +\infty) \rightarrow \mathbb{R}$ are continuous functions.

Defining

$$a(x, t) = g_0(t) \cdot (1 - x) + g_1(t) \cdot x,$$

show that, if

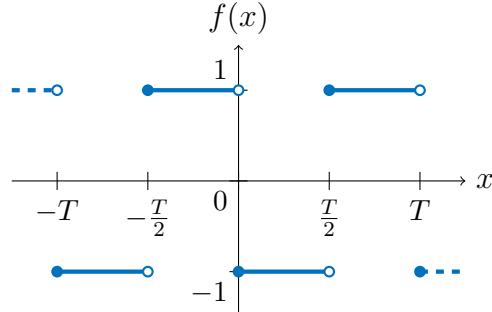
$$w(x, t) \doteq u(x, t) - a(x, t),$$

then w solves a heat equation with source term $f(x, t) - \frac{\partial a}{\partial t}(x, t) + \frac{\partial^2 a}{\partial x^2}(x, t)$ and *homogeneous* (in fact, Dirichlet) boundary conditions at $x = 0, 1$.

Solutions

1. We want to write the function $f(x)$ as a linear combination of the basis vectors $\cos\left(\frac{2\pi n}{T}x\right)$ and $\sin\left(\frac{2\pi n}{T}x\right)$ such that $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi n}{T}x\right) + b_n \sin\left(\frac{2\pi n}{T}x\right)$ where T is the period of the function. We need to determine the coefficients a_n and b_n of this series. As we saw in the course, we extract these coefficients by projecting the function over the basis elements:

- $a_0 = \frac{2}{T} \langle f(x), 1 \rangle = \frac{2}{T} \int_0^T f(x) dx$
- $a_n = \frac{2}{T} \left\langle f(x), \cos\left(\frac{2\pi n}{T}x\right) \right\rangle = \frac{2}{T} \int_0^L f(x) \cos\left(\frac{2\pi n}{T}x\right) dx$
- $b_n = \frac{2}{T} \left\langle f(x), \sin\left(\frac{2\pi n}{T}x\right) \right\rangle = \frac{2}{T} \int_0^L f(x) \sin\left(\frac{2\pi n}{T}x\right) dx$



The function is odd. Therefore $a_n = 0 \forall n \in \mathbb{N}$; we are only left to compute the sine coefficients :

$$\begin{aligned}
 b_n &= \frac{2}{T} \int_0^T f(x) \sin\left(\frac{2\pi n}{T}x\right) dx = -\frac{2}{T} \int_0^{T/2} \sin\left(\frac{2\pi n}{T}x\right) dx + \frac{2}{T} \int_{T/2}^T \sin\left(\frac{2\pi n}{T}x\right) dx \\
 &\stackrel{*}{=} -\frac{2}{T} \int_0^{T/2} \sin\left(\frac{2\pi n}{T}x\right) dx + \frac{2}{T} \int_{-T/2}^0 \sin\left(\frac{2\pi n}{T}x\right) dx \stackrel{**}{=} -\frac{4}{T} \int_0^{T/2} \sin\left(\frac{2\pi n}{T}x\right) dx \\
 &= \frac{2}{\pi n} \cos\left(\frac{2\pi n}{T}x\right) \Big|_0^{T/2} = \frac{2}{\pi n} (\cos(\pi n) - 1) = \frac{2}{\pi n} ((-1)^n - 1) \stackrel{***}{=} -\frac{4}{\pi(2n+1)}
 \end{aligned}$$

In (*) we use the fact that our function is T -periodic to shift the interval of integration by an integer multiple of T . This is eventually useful in (**) where we merge the two integrals by

using the fact that the function is odd. This decreases the number of integrals to compute. The final answer in $(***)$ is obtained by realizing first that $\cos(\pi n) = (-1)^n$, and second that the whole expression is null for even values of n . We only pick the odd values by replacing $n \rightarrow 2n + 1$. Therefore, the final answer reads :

$$f(x) = - \sum_{n=1}^{\infty} \frac{4}{\pi(2n+1)} \sin\left(\frac{2\pi(2n+1)}{T}x\right)$$

2. (a) We apply the Laplace transform on both sides of the equation. The integral term is clearly a convolution between $k(t)$ and $u(t)$.

$$\begin{aligned} \mathcal{L}[u(t)](z) &= \mathcal{L}[g(t)](z) + \mathcal{L}[k(t) * u(t)](z) \\ &= \mathcal{L}[g(t)](z) + \mathcal{L}[k(t)](z) \cdot \mathcal{L}[u(t)](z) \end{aligned}$$

For clarity, we write the Laplace transforms in upper cases and isolate $U(z)$:

$$U(z) = G(z) + K(z) \cdot U(z) \iff U(z) = \frac{G(z)}{1 - K(z)}$$

(b) In the case of $g(t) = t$ and $k(t) = e^{-t}$, we can compute the following form for $U(z)$:

$$U(z) = \frac{G(z)}{1 - K(z)} = \frac{1}{z^2} \cdot \frac{1}{1 - \frac{1}{z+1}} = \frac{1}{z^2} + \frac{1}{z^3}$$

The inverse transform then reads :

$$\mathcal{L}^{-1}[U(z)](t) = \mathcal{L}^{-1}\left[\frac{1}{z^2}\right](t) + \mathcal{L}^{-1}\left[\frac{1}{z^3}\right](t) = t + \frac{t^2}{2} = u(t)$$

3. Since both f and the solution u that we are seeking are odd and L -periodic functions, their Fourier series consists only of the sine terms:

$$u(x) = \sum_{n=1}^{\infty} u_n \sin\left(\frac{2\pi n}{L}x\right), \quad f(x) = \sum_{n=1}^{\infty} f_n \sin\left(\frac{2\pi n}{L}x\right).$$

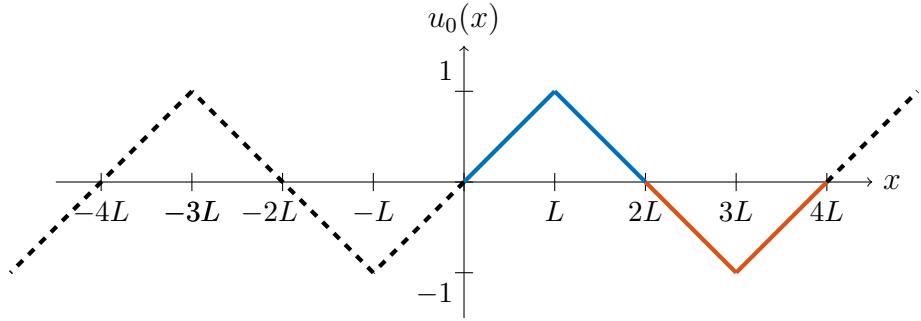
Injecting the above ansatz into the biharmonic equation, we have:

$$\sum_{n=1}^{\infty} u_n \left(\frac{2\pi n}{L}\right)^4 \sin\left(\frac{2\pi n}{L}x\right) = \sum_{n=1}^{\infty} f_n \sin\left(\frac{2\pi n}{L}x\right)$$

This equation is true only when the coefficients of the left and the right hand side match, hence the solution to this equation is a sine-Fourier series with coefficients u_n given in terms of the Fourier coefficients f_n of f by the formula:

$$u_n = f_n \left(\frac{L}{2\pi n}\right)^4.$$

4. As usual, since we want to solve a problem with Dirichlet boundary conditions, we extend our functions as **odd** functions of x with period twice the length of the initial x -interval; thus, the period in this case will be $T = 4L$. In the case of the initial profile $u_0(x)$, this extension will look as follows:



Being an odd, $4L$ -periodic function of x , the function $u(x, t)$ decomposes as a sine-trigonometric series as follows:

$$u(x, t) = \sum_{n=1}^{\infty} b_n(t) \sin\left(\frac{\pi n}{2L} x\right),$$

while the initial profile is expanded as:

$$u_0(x) = \sum_{n=1}^{\infty} b_{0n} \sin\left(\frac{\pi n}{2L} x\right),$$

where

$$\begin{aligned} b_{0n} &= \frac{2}{4L} \int_0^{4L} u_0(x) \sin\left(\frac{\pi n}{2L} x\right) dx \\ &\stackrel{u \text{ is odd}}{=} \frac{4}{4L} \int_0^{2L} u_0(x) \sin\left(\frac{\pi n}{2L} x\right) dx \\ &= \frac{1}{L} \left\{ \int_0^L x \sin\left(\frac{\pi n}{2L} x\right) dx + \int_L^{2L} (2L - x) \sin\left(\frac{\pi n}{2L} x\right) dx \right\} \\ &= \frac{1}{L} \left\{ \frac{-2L^2 \left[\pi n \cos\left(\frac{\pi n}{2}\right) - 2 \sin\left(\frac{\pi n}{2}\right) \right]}{\pi^2 n^2} + \frac{2L^2 (-1)^n \left[\pi n \cos\left(\frac{\pi n}{2}\right) - 2 \sin\left(\frac{\pi n}{2}\right) \right]}{\pi^2 n^2} \right\} \\ &= \frac{2L \left(\pi n \cos\left(\frac{\pi n}{2}\right) - 2 \sin\left(\frac{\pi n}{2}\right) \right)}{\pi^2 n^2} \cdot ((-1)^n - 1) \end{aligned}$$

Note that the above expression can be simplified further, by considering the values of n modulo 4:

$$b_{0n} = \begin{cases} 0, & n = 4k \text{ or } n = 4k + 2, \\ -\frac{4L}{\pi^2 n^2}, & n = 4k + 1, \\ \frac{4L}{\pi^2 n^2}, & n = 4k + 3. \end{cases}$$

Injecting the trigonometric series for u into the wave equation :

$$\begin{aligned} \frac{\partial^2}{\partial t^2} \left(\sum_{n=1}^{\infty} b_n(t) \sin \left(\frac{\pi n}{2L} x \right) \right) &= \frac{\partial^2}{\partial x^2} \left(\sum_{n=1}^{\infty} b_n(t) \sin \left(\frac{\pi n}{2L} x \right) \right) \\ \iff \sum_{n=1}^{\infty} \underbrace{\left[b_n''(t) + b_n(t) \left(\frac{\pi n}{2L} \right)^2 \right]}_{=0} \sin \left(\frac{\pi n}{2L} x \right) &= 0 \end{aligned}$$

This expression must be valid for all x , and the only possibility is that the expression in square brackets is equal to zero. This gives us an ordinary differential equation on the coefficients $b_n(t)$:

$$b_n''(t) + \left(\frac{\pi n}{2L} \right)^2 b_n(t) = 0.$$

Since $t \in [0, +\infty)$, we can naturally linearize and solve this equation with the Laplace transform. We write the Laplace transform in upper case for clarity.

$$\mathcal{L} \left[b_n''(t) + b_n(t) \left(\frac{\pi n}{2L} \right)^2 \right] = 0 \iff z^2 B_n(z) - z b_n(0) - b_n'(0) + \left(\frac{\pi n}{2L} \right)^2 \cdot B_n(z) = 0$$

The factors $b_n(0)$ and $b_n'(0)$ correspond to the Fourier coefficients that describe the function $u(x, t)$ and its derivative $\partial_t u(x, t)$ at $t = 0$, respectively. Since $u(x, 0) = u_0(x)$ and $\frac{\partial u}{\partial t}(x, 0)$, we must have

$$b_n(0) = b_{0n} \quad \text{and} \quad b_n'(0) = 0.$$

Thus, we have

$$z^2 B_n(z) - z b_{0n} + \left(\frac{\pi n}{2L} \right)^2 \cdot B_n(z) = 0 \iff B_n(z) = b_{0n} \frac{z}{z^2 + \left(\frac{\pi n}{2L} \right)^2}$$

Hence, since $\mathcal{L} \left[\cos \left(\frac{\pi n}{2L} t \right) \right] (z) = \frac{z}{z^2 + \left(\frac{\pi n}{2L} \right)^2}$:

$$b_n(t) = b_{0n} \cos \left(\frac{\pi n}{2L} t \right).$$

The complete solution for $u(x, t)$ is therefore :

$$u(x, t) = \sum_{n=1}^{\infty} b_{0n} \cos \left(\frac{\pi n}{2L} t \right) \sin \left(\frac{\pi n}{2L} x \right).$$

5. (a) We compute the following derivative :

$$\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} u(x, t) dx = \int_{-\infty}^{+\infty} \frac{\partial u}{\partial t}(x, t) dx \stackrel{\text{Equation for } u}{=} \int_{-\infty}^{+\infty} \kappa \frac{\partial^2 u}{\partial x^2}(x, t) dx = \kappa \frac{\partial u}{\partial x}(x, t) \Big|_{-\infty}^{+\infty} = 0$$

Since $\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} u(x, t) dx = 0$, it follows that $\int_{-\infty}^{+\infty} u(x, t_1) dx = \int_{-\infty}^{+\infty} u(x, t_2) dx$ for all $t_1, t_2 \geq 0$.

(b) We apply the Fourier transform in x on both sides of the heat equation. We use the notation $\mathcal{F}[u(x, t)](a, t) = \hat{u}(a, t)$

$$\frac{\partial \hat{u}}{\partial t}(a, t) = \kappa(ia)^2 \hat{u}(a, t) \iff \frac{\partial \hat{u}}{\partial t}(a, t) = -\kappa a^2 \hat{u}(a, t)$$

We can solve the above ODE in time using, for instance, a Laplace transform in t ; we obtain:

$$\hat{u}(a, t) = \hat{u}(a, 0) e^{-\kappa a^2 t}.$$

Using the initial condition $u(x, 0) = \frac{e^{-\frac{x^2}{4\tau\kappa}}}{\sqrt{4\pi\tau\kappa}}$, we compute

$$\hat{u}(a, 0) = \mathcal{F} \left[\frac{e^{-x^2/4\tau\kappa}}{\sqrt{4\pi\tau\kappa}} \right] = \frac{e^{-a^2\kappa\tau}}{\sqrt{2\pi}}$$

(in the above, we used the fact that $\mathcal{F}[e^{-\frac{x^2}{2}}](a) = e^{-\frac{a^2}{2}}$ together with the rescaling property of the Fourier transform: $\mathcal{F}[f(\lambda x)](a) = \frac{1}{|\lambda|} \mathcal{F}[f(x)](\frac{a}{\lambda})$). Therefore,

$$\hat{u}(a, t) = \frac{e^{-\kappa a^2(t+\tau)}}{\sqrt{2\pi}}.$$

The original function $u(x, t)$ is then given by the inverse Fourier transform :

$$u(x, t) = \mathcal{F}^{-1}[\hat{u}(a, t)](x, t) = \mathcal{F}^{-1} \left[\frac{e^{-\kappa a^2(t+\tau)}}{\sqrt{2\pi}} \right] = \frac{e^{-x^2/4\kappa(t+\tau)}}{2\sqrt{\pi\kappa(t+\tau)}}$$

6. The new function $w(x, t) = u(x, t) - a(x, t)$ has indeed homogeneous (in fact Dirichlet) boundary conditions at $x = 0, 1$ since :

- $w(0, t) = u(0, t) - g_0(t)(1 - 0) - \cancel{g_1(t) \cdot 0}^0 = g_0(t) - g_0(t) = 0$
- $w(1, t) = u(1, t) - \cancel{g_0(t)(1 - 1)}^0 - g_1(t) \cdot 1 = g_1(t) - g_1(t) = 0$

Using the fact that u satisfies

$$\frac{\partial u}{\partial t}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) = f(x, t),$$

we can then calculate:

$$\begin{aligned}
 \frac{\partial w}{\partial t}(x, t) - \frac{\partial^2 w}{\partial x^2}(x, t) &= \frac{\partial u}{\partial t}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) - \frac{\partial a}{\partial t}(x, t) + \frac{\partial^2 a}{\partial x^2}(x, t) \\
 &= f(x, t) - \frac{\partial}{\partial t}(g_0(t)(1 - x) + g_1(t)x) + \frac{\partial^2}{\partial x^2}(g_0(t)(1 - x) + g_1(t)x) \\
 &= f(x, t) - g'_0(t)(1 - x) - g'_1(t)x.
 \end{aligned}$$

Overall, setting

$$F(x, t) \doteq f(x, t) - g'_0(t)(1 - x) - g'_1(t)x \quad \text{and} \quad w_0(x) \doteq u_0(x) - g_0(0)(1 - x) - g_1(0)x,$$

the function $w(x, t)$ solves the initial-boundary value problem with Dirichlet boundary conditions:

$$\begin{cases} \frac{\partial w}{\partial t}(x, t) - \frac{\partial^2 w}{\partial x^2}(x, t) = F(x, t), & t > 0, x \in (0, 1), \\ w(x, 0) = w_0(x), \\ w(0, t) = 0 = w(1, t). \end{cases}$$

The above is of the same type as the ones we saw how to solve in the lectures.