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1. Consider the periodic function f : R → R with period T > 0 such that, on the interval [0, T ),
it takes the form

f(x) =

+1, T
2 ⩽ x < T,

−1, 0 ⩽ x < T
2 .

Compute the Fourier series of f .

2. Let us consider an integral equation of the following form:

u(t) = g(t) +
� t

0
k(t − s)u(s) ds.

In the above, k, g : [0, +∞) → R are given piecewise continuous functions and we are solving
for a function u : [0, +∞) → R. Remark: The above equation is a special case of a Volterra
equation of second kind. These equations arise naturally in models dynamic systems where
past values of a variable influence the current value with a weight determined by the kernel
function k.

(a) Assuming that both g and k are such so that their Laplace transform is well-defined in
some half-space of the form {z : Re(z) > a}, find an expression for the Laplace transform
of u.

(b) Find u in the case when g(t) = t and k(t) = e−t.

3. Let f : R → R be an odd, L-periodic function. Using Fourier series, find an odd and L-periodic
solution u of the biharmonic equation

d4u

dx4 = f.

4. Consider the following initial state on the interval I = [0, 2L]:

u0(x) =

x, 0 ⩽ x ⩽ L,

2L − x, L ⩽ x ⩽ 2L.

Find the solution of the wave equation
∂2u

∂t2 = ∂2u

∂x2

with initial conditions
u(x, 0) = u0(x), ∂u

∂t
(x, 0) = 0

and Dirichlet boundary conditions at x = 0, 2L:

u(0, t) = 0, u(2L, t) = 0.

Hint: First extend u, u0 as odd periodic functions in the variable x ∈ R; what should be the the
period for this extension?
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5. For κ > 0, let us consider the heat equation

∂u

∂t
(x, t) = κ

∂2u

∂x2 (x, t), t > 0 x ∈ R. (1)

(a) Show that, for any solution u with ∂u
∂x

→ 0 as x → ± + ∞ and any t2 ⩾ t1, we have
� +∞

−∞
u(x, t1) dx =

� +∞

−∞
u(x, t2) dx.

(Hint: Compute the derivative ∂t

� +∞

−∞
u(x, t) dx.)

(b) Compute the solution of (1) with initial data

u(x, 0) = 1√
4πτκ

e− x2
4τκ

for some given τ > 0. Deduce, in particular, that the heat evolution of a Gaussian function
is a Gaussian function at any fixed time. (Hint: You will need to recall what is the Fourier
transform of a Gaussian function, see Ex. 8.3)

6. So far, we have only considered cases of homogeneous boundary conditions (namely boundary
conditions which are invariant if we replace the unknown function u(x, t) with λ · u(x, t); for
example, Dirichlet conditions u(x0, t) = 0 or Neumann conditions ∂xu(x0, t) = 0). Let us now
consider the question of how to handle inhomogeneous boundary conditions.
To this end, let us consider the following inhomogeneous initial-boundary value problem for
the heat equation: 

∂u
∂t

(x, t) − ∂2u
∂x2 (x, t) = f(x, t) for x ∈ (0, 1), t > 0,

u(x, 0) = u0(x),
u(0, t) = g0(t), u(1, t) = g1(t), for t > 0,

where f : (0, 1) × (0, +∞) → R, u0 : (0, 1) → R and g0, g1 : [0, +∞) → R are continuous
functions.
Defining

a(x, t) = g0(t) · (1 − x) + g1(t) · x,

show that, if
w(x, t) .= u(x, t) − a(x, t),

then w solves a heat equation with source term f(x, t) − ∂a
∂t

(x, t) + ∂2a
∂x2 (x, t) and homogeneous

(in fact, Dirichlet) boundary conditions at x = 0, 1.
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Solutions
1. We want to write the function f(x) as a linear combination of the basis vectors cos

(
2πn
T

x
)

and

sin
(

2πn
T

x
)

such that f(x) = a0
2 +

∞∑
n=1

an cos
(

2πn
T

x
)

+ bn sin
(

2πn
T

x
)

where T is the period of the
function. We need to determine the coefficients an and bn of this series. As we saw in the
course, we extract these coefficients by projecting the function over the basis elements:

• a0 = 2
T

⟨ f(x) , 1 ⟩ = 2
T

T�

0

f(x) dx

• an = 2
T

〈
f(x) , cos

(2πn

T
x
)〉

= 2
T

L�

0

f(x) cos
(2πn

T
x
)

dx

• bn = 2
T

〈
f(x) , sin

(2πn

T
x
)〉

= 2
T

L�

0

f(x) sin
(2πn

T
x
)

dx

x

f(x)

0 TT
2

−T −T
2

1

−1

The function is odd. Therefore an = 0 ∀ n ∈ N; we are only left to compute the sine coefficients
:

bn = 2
T

T�

0

f(x) sin
(2πn

T
x
)

dx = − 2
T

T/2�

0

sin
(2πn

T
x
)

dx + 2
T

T�

T/2

sin
(2πn

T
x
)

dx

∗= − 2
T

T/2�

0

sin
(2πn

T
x
)

dx + 2
T

0�

−T/2

sin
(2πn

T
x
)

dx
∗∗= − 4

T

T/2�

0

sin
(2πn

T
x
)

dx

= 2
πn

cos
(2πn

T
x
)∣∣∣∣T/2

0
= 2

πn
(cos (πn) − 1) = 2

πn
((−1)n − 1) ∗∗∗= − 4

π(2n + 1)

In (∗) we use the fact that our function is T -periodic to shift the interval of integration by
an integer multiple of T This is eventually useful in (∗∗) where we merge the two integrals by
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using the fact that the function is odd. This decreases the number of integrals to compute.
The final answer in (∗ ∗ ∗) is obtained by realizing first that cos (πn) = (−1)n, and second that
the whole expression is null for even values of n. We only pick the odd values by replacing
n → 2n + 1. Therefore, the final answer reads :

f(x) = −
∞∑

n=1

4
π(2n + 1) sin

(
2π(2n + 1)

T
x

)

2. (a) We apply the Laplace transform on both sides of the equation. The integral term is clearly
a convolution between k(t) and u(t).

L[u(t)](z) = L[g(t)](z) + L[k(t) ∗ u(t)](z)
= L[g(t)](z) + L[k(t)](z) · L[u(t)](z)

For clarity, we write the Laplace transforms in upper cases and isolate U(z) :

U(z) = G(z) + K(z) · U(z) ⇐⇒ U(z) = G(z)
1 − K(z)

(b) In the case of g(t) = t and k(t) = e−t, we can compute the following form for U(z) :

U(z) = G(z)
1 − K(z) = 1

z2 · 1
1 − 1

z+1
= 1

z2 + 1
z3

The inverse transform then reads :

L−1[U(z)](t) = L−1
[ 1
z2

]
(t) + L−1

[ 1
z3

]
(t) = t + t2

2 = u(t)

3. Since both f and the solution u that we are seeking are odd and L-periodic functions, their
Fourier series consists only of the sine terms:

u(x) =
∞∑

n=1
un sin

(2πn

L
x
)

, f(x) =
∞∑

n=1
fn sin

(2πn

L
x
)

.

Injecting the above ansatz into the biharmonic equation, we have:
∞∑

n=1
un

(2πn

L

)4
sin

(2πn

L
x
)

= ≡
∞∑

n=1
fn sin

(2πn

L
x
)

This equation is true only when the coefficients of the left and the right hand side match, hence
the solution to this equation is a sine-Fourier series with coefficients un given in terms of the
Fourier coefficients fn of f by the formula:

un = fn

(
L

2πn

)4
.
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4. As usual, since we want to solve a problem with Dirichlet boundary conditions, we extend our
functions as odd functions of x with period twice the length of the initial x-interval; thus, the
period in this case will be T = 4L. In the case of the initial profile u0(x), this extension will
look as follows:

x

u0(x)

2LL 3L 4L−L−2L−3L−3L−4L

1

−1

Being an odd, 4L-periodic function of x, the function u(x, t) decomposes as a sine-trigonometric
series as follows:

u(x, t) =
∞∑

n=1
bn(t) sin

(
πn

2L
x
)

,

while the initial profile is expanded as:

u0(x) =
∞∑

n=1
b0n sin

(
πn

2L
x
)

,

where

b0n = 2
4L

4L�

0

u0(x) sin
(

πn

2L
x
)

dx

u is odd= 4
4L

2L�

0

u0(x) sin
(

πn

2L
x
)

dx

= 1
L


L�

0

x sin
(

πn

2L
x
)

dx +
2L�

L

(2L − x) sin
(

πn

2L
x
)

dx


= 1

L

·
−2L2

[
πn cos

(
πn
2

)
− 2 sin

(
πn
2

)]
π2n2 +

2L2(−1)n
[
πn cos

(
πn
2

)
− 2 sin

(
πn
2

)]
π2n2


=

2L
(
πn cos

(
πn
2

)
− 2 sin

(
πn
2

))
π2n2 · ((−1)n − 1)
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Note that the above expression can be simplified further, by considering the values of n modulo
4:

b0n =


0, n = 4k or n = 4k + 2,

− 4L
π2n2 , n = 4k + 1,

4L
π2n2 , n = 4k + 3.

Injecting the trigonometric series for u into the wave equation :

∂2

∂t2

( ∞∑
n=1

bn(t) sin
(

πn

2L
x
))

= ∂2

∂x2

( ∞∑
n=1

bn(t) sin
(

πn

2L
x
))

⇐⇒
∞∑

n=1

[
b′′

n(t) + bn(t)
(

πn

2L

)2
]

︸ ︷︷ ︸
=0

sin
(

πn

2L
x
)

= 0

This expression must be valid for all x, and the only possibility is that the expression in square
brackets is equal to zero. This gives us an ordinary differential equation on the coefficients
bn(t):

b′′
n(t) +

(
πn

2L

)2
bn(t) = 0.

Since t ∈ [0, +∞), we can naturally linearize and solve this equation with the Laplace transform.
We write the Laplace transform in upper case for clarity.

L
[
b′′

n(t) + bn(t)
(

πn

2L

)2
]

= 0 ⇐⇒ z2Bn(z) − zbn(0) − b′
n(0) +

(
πn

2L

)2
· Bn(z) = 0

The factors bn(0) and b′
n(0) correspond to the Fourier coefficients that describe the function

u(x, t) and its derivative ∂tu(x, t) at t = 0, respectively. Since u(x, 0) = u0(x) and ∂u
∂t

(x, 0), we
must have

bn(0) = b0n and b′
n(0) = 0.

Thus, we have

z2Bn(z) − zb0n +
(

πn

2L

)2
· Bn(z) = 0 ⇐⇒ Bn(z) = b0n

z

z2 +
(

πn
2L

)2

Hence, since L
[
cos

(
πn
2L

t
)]

(z) = z

z2+(πn
2L )2 :

bn(t) = b0n cos
(

πn

2L
t
)

.

The complete solution for u(x, t) is therefore :

u(x, t) =
∞∑

n=1
b0n cos

(
πn

2L
t
)

sin
(

πn

2L
x
)

.
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5. (a) We compute the following derivative :

∂

∂t

+∞�
−∞

u(x, t) dx =
+∞�

−∞

∂u

∂t
(x, t) dx

Equation for u=
+∞�

−∞

κ
∂2u

∂x2 (x, t) dx = κ
∂u

∂x
(x, t)

∣∣∣∣∣
+∞

−∞
= 0

Since ∂t

+∞�
−∞

u(x, t) dx = 0, it follows that
+∞�

−∞
u(x, t1) dx =

+∞�
−∞

u(x, t2) dx for all t1, t2 ⩾ 0.

(b) We apply the Fourier transform in x on both sides of the heat equation. We use the
notation F [u(x, t)](a, t) = û(a, t)

∂û

∂t
(a, t) = κ(ia)2û(a, t) ⇐⇒ ∂û

∂t
(a, t) = −κa2û(a, t)

We can solve the above ODE in time using, for instance, a Laplace transform in t; we
obtain:

û(a, t) = û(a, 0)e−κa2t.

Using the initial condition u(x, 0) = e− x2
4τκ√

4πκτ
, we compute

û(a, 0) = F
[

e−x2/4τκ

√
4πτκ

]
= e−a2κτ

√
2π

(in the above, we used the fact that F [e− x2
2 ](a) = e− a2

2 together with the rescaling property
of the Fourier transform: F [f(λx)](a) = 1

|λ|F [f(x)]( a
λ
)). Therefore,

û(a, t) = e−κa2(t+τ)
√

2π
.

The original function u(x, t) is then given by the inverse Fourier transform :

u(x, t) = F−1[û(a, t)](x, t) = F−1
[

e−κa2(t+τ)
√

2π

]
= e−x2/4κ(t+τ)

2
√

πκ(t + τ)

6. The new function w(x, t) = u(x, t)−a(x, t) has indeed homogeneous (in fact Dirichlet) boundary
conditions at x = 0, 1 since :

• w(0, t) = u(0, t) − g0(t)(1 − 0) − �����: 0
g1(t) · 0 = g0(t) − g0(t) = 0

• w(1, t) = u(1, t) − �������: 0
g0(t)(1 − 1) − g1(t) · 1 = g1(t) − g1(t) = 0

Using the fact that u satisfies

∂u

∂t
(x, t) − ∂2u

∂x2 (x, t) = f(x, t),
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we can then calculate:

∂w

∂t
(x, t) − ∂2w

∂x2 (x, t) = ∂u

∂t
(x, t) − ∂2u

∂x2 (x, t) − ∂a

∂t
(x, t) + ∂2a

∂x2 (x, t)

= f(x, t) − ∂

∂t
(g0(t)(1 − x) + g1(t)x) + ∂2

∂x2 (g0(t)(1 − x) + g1(t)x)

= f(x, t) − g′
0(t)(1 − x) − g′

1(t)x.

Overall, setting

F (x, t) .= f(x, t) − g′
0(t)(1 − x) − g′

1(t)x and w0(x) .= u0(x) − g0(0)(1 − x) − g1(0)x,

the function w(x, t) solves the initial-boundary value problem with Dirichlet boundary condi-
tions: 

∂w
∂t

(x, t) − ∂2w
∂x2 (x, t) = F (x, t), t > 0, x ∈ (0, 1),

w(x, 0) = w0(x),
w(0, t) = 0 = w(1, t).

The above is of the same type as the ones we saw how to solve in the lectures.

Page 8


